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Abstract—Autonomous vehicles (AV) depend on reliable wire-
less communication with a remote operator or database for
safe operation along a path. We plotted a map showing various
signal strengths, called signal heat map. These signal heat maps
represent the coverage strength in 4G and LTE network. We
investigate routing the AV based on signal strength and shortest
traveling distance. We consider previous routing algorithms. One
novel test of the surveyed algorithms is their level of accuracy
when only partial-knowledge of one or more factors is available.
We constrain the knowledge of signal strength along a route and
measure how close to the solution various algorithms perform. In
addition, we consider the execution speed of each algorithm as the
size of the map increases. By integrating heat maps of network
signal strength with a distance-based routing algorithm, the best
optimal path can be determined with a measurable capacity. We
work with real measured signals and simulated signal maps to
refine an approach defining ideal routes based on distance and
signal strength.

Index Terms—Autonomous vehicle routing (AV), routing with
partial knowledge, Dijkstra, Bellman-Ford, Acyclic.

I. INTRODUCTION

Autonomous vehicles (AV) depend on a reliable wireless
communication with a remote operator or data network. Low
signal strengths could reduce the reliability of future AV
solutions. In order to ensure safety and the best optimal
operation of the AV, it is desirable to route the AV based on
the signal strength. Thus, we seek to investigate an adaptive
routing that is based on multifactor data sets. So, we have
produced few fitness formulas with different emphases. The
most useful formula is the one that gives the priority to the
signal strength and then to the minimum traveling distance.
This results in a safe AV functioning while minimizing driving
time. In this work, we use both simulated and real signal heat
maps to explore various ways of routing the AV.

The most direct precursors of our research explore decen-
tralized routing with partial knowledge resulting from network
disruptions[1]. They find that routing performance is only
lightly affected even when 50 percent of information sharing
attempts fail. Others have also found promise in systems based
on sparse traffic pattern knowledge[2].

The utility of testing algorithm performance with partial sig-
nal strengths knowledge lies in the potential for such situations
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to occur in practical autonomous vehicle. The use of vehicle
to vehicle (V2V) or vehicle to infrastructure communication
could offer real time data with varying completeness and
quality. Understanding how various algorithms perform under
such conditions offers good utility to be used in the AV
multifactor routing. We find that with accessing 30 percent of
the total signal strength map we can produce routes that are
5 percent less compared to routes produced with 100 percent
signal strength knowledge.

We are mainly interested in the following distance rout-
ing algorithms: Dijkstra’s Link-State Algorithm, Bellman-
Ford Distance-Vector Algorithm (BF), and Directed Acyclic
Algorithm via Topological Ordering (DAG). The results of
our own tests confirm support for Djikstra as the fastest and
most accurate algorithm for routing based on signal strength
and distance.

A. Paper Organization

We have organized the paper as follows. In Section II,
we explore the literature of distance-based routing algorithms
and how they apply to the AV routing problem. In the
Approach Section III, we detail how we have approached the
problem and present the developed formula. In the Results and
Discussion Section IV, we explain the performance of all three
algorithms and suggest the best routing algorithm.

II. BACKGROUND

Most of the literature focuses on developing routing algo-
rithms based on traveling distance. Other literature focuses
on multi-factor routing algorithms to avoid busy traffic and
long traveling distance. These algorithms model the routing
problem using a graph G = (V, E) [3]. Street intersections
(nodes) are represented by the graph vertexes V' and the
weights of streets as graph edges E. Denote n = |V| as the
number of nodes and m = |E| as the number of edges. Table I
presents the common distance-based routing algorithms: Dijk-
stra’s Link-State Algorithm (DIKBA and DIKBD), Bellman-
Ford’s Distance-Vector Algorithm (BF), and Directed Acyclic
Algorithm via Topological Ordering (DAG). As detailed in
Table I, each algorithm has its own advantages and disadvan-
tages.
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TABLE I
SUMMARY OF SHORTEST PATH ALGORITHMS

Algorithm Advantage(s) Disadvantage(s) Complexity
Dijkstra
Link-State Algorithm
DIKBD[4] e Handles larger scale o Time Consuming via O(m+n(8 + (%)))
graphs (arc length >  Relaxation Principle
1500)
e Considers all weights e Considers only Non-
(with loops) Negative Weights
DIKBA([3] e Handles smaller scale e Time Consuming via O(mfB+ n(B8+ %))
graphs (arc length <  Relaxation Principle
1500)

e Considers all weights
(with loops)

e  Terminates
routes  during
process

un-used
iteration

e Considers only Non-
Negative Weights

Bellman-Ford
Distance-Vector

Algorithm
BF[5] e Considers Positive and e Time Consuming via  O(nm)
Negative Weights (with  Relaxtion Principle
loops)
e Does not terminate other
iterations when search-
ing for Shortest Possible
Route
Acyclic
Topological Ordering
DAGI6] e Operates Faster than e Less Weight Considera-  O(nm)

Bellman-Ford or Dijkstra
e Deletes the ignored arcs

tion

e Considers only Non-
Negative weights

e Considers out-going
weights only (No loops)

A. Bellman-Ford

The Bellman-Ford Algorithm[5] computes the shortest paths
from a single source vertex to all other vertices in a weighted
graph. In our case, weights equal the signal strength via
the Relaxation Principle. The Relaxation Principle is a blind
search for the shortest route possible, thereby leading to
values being replaced gradually, leading to the optimal routing
solution. Unfortunately, Bellman-Ford is slower than Dijkstra’s
Link-State Algorithm as shown in Fig.(5). This is primarily
because of the Bellman-Ford algorithm’s capability of pro-
cessing graphs with negative weights and the amount stored
as explained in [7].

B. Directed Acyclic Graph

An acyclic graph has no path that leads away from a variable
only to return to that same variable. One type of acyclic graph
is a Directed Acyclic Graph (DAG)[6] that considers only
positive arcs (weights). No path starts and ends at the same
vertex, thus there are no loops. It is possible to find the shortest
and longest path from a given source vertex (source node)
in DAG with linear time by processing vertices (nodes) in a
topological order.

C. Dijksta Link-State Algorithm

Dijkstra’s Link-State Algorithm[7] solves the single-source
shortest path problem for a graph with non-negative edges via

the Relaxation Principle as well. In contrary to the Bellman-
Ford algorithm, the Link-State Algorithm only stores the
necessary routing data in the route searching process. In other
words, if a route is not the shortest possible route, then the
data is terminated.

According to authors in [8], the two best algorithms for
one-to-one path finding are Dijkstras Approximate Buckets
(DIKBA) and Dijkstras Double Buckets (DIKBD)[8]. Also,
authors found that for large paths (Network arc length over
1500) DIKBD is the best, and for smaller paths DIKBA is
the best. Furthermore, authors in [4] found that DIKBD is the
fastest algorithm for networks with non-negative arc lengths.

III. APPROACH

Our goal is to study the effectiveness of the developed
adaptive multifactor routing scheme to route an AV with partial
knowledge of the signal map. To approach this goal we test
our multifactor formula with various routing algorithms by
employing simulated and measured signal strengths. We route
the AV based on signal strength and shortest euclidean dis-
tance. Doing so has required a way to integrate all the factors
into a single fitness factor on which we could judge routes. We
decided to approach fitness that indicates route inconvenience
or “undesirability”. This composite factor allows us to route
based on a single quantity and simplifies the employment of
surveyed routing algorithms. This composite factor is defined
according the following formula:
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Fig. 1. Simulation flow diagram for AV routing with partial-knowledge of
signal strength

EdgeWeight = % -distance + % ~SignalStreng(tli;

where k and §, distance gain and signal average gain, are
the two design thresholds used to tune the priority of signal
strength as a routing factor. Using the log function allows us
to prioritize the presence of a decent signal. We have used a
graphical way to tune the £ and § threshold values. We are
still working on developing a theoretic-based method to select
proper values of these thresholds and it is expected to show
up in future publications.

Several fitness formulas will be needed for every particular
application, given the wide variability of AV requirements and
the variance in performance of various cellular technologies at
different signal strengths.

A. Simulation Methodology

For our tests of speed and path finding with partial signal
knowledge, we supplement the simulated data with very large
randomized maps. These randomized maps avoid some of the
biases potentially presented in smaller maps corresponding to
real values and offer a pure test of routing algorithm average
performance. Fig.(1) illustrates the details for one simulation
run.

For each simulation run we generate a map of a basic city
with vertical and horizontal streets, buildings with diverse
heights and some polygonal plazas. We use the empirical path
loss model COST231 [9] to simulate the signal propagation.
A typical generated heat map is shown in Fig (2). Table II
shows the simulation parameter values. We have simulated
routing algorithms performance according to three signal heat
map scenarios: strong coverage, average coverage and low
coverage. We have adopted the values shown in Table III for
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Fig. 3. Autonomous vehicle routing with partial- and full- signal knowl-
edge

each scenario.

Fig.(3) shows a visual result for one simulation run, where
the AV travels from point A to point B. We have also tested
the formula with a real-recorded signal strengths, as shown
in Fig. (4). We have recorded signal strengths for one of the
4G operators in Tucson, Arizona. Then, we have verified the
efficiency of the proposed formula using simulation where
inputs are the real measured data.

IV. RESULTS AND DISCUSSIONS

We have produced two primary results. First we tested the
execution speed of various shortest path algorithms to confirm
the prior art that we explored in our literature review. Second,
we evaluated the performance of the algorithms when only
partial signal knowledge was available.
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TABLE I
SIMULATION PARAMETERS

32.252

[| Simulation Parameter [ Value
Map specifications Map size [km] 20z 20
Street widths [meter] 5
Buildings separation distance [meter] 15
Building heights [meter] 5, 10, 15,
Signal specifications Channel fading Rayleigh
De-correlation distances (dcorr) [meter] | 75, 50, 20 -
Shadowing standard deviation (o) 1,3, 5
Number of transmitters 100, 300,
Transmit antenna gain 1
Receive antenna gain 1
Transmitted power 46 dbm
Other specifications Number of simulation runs 1,000
TABLE III
SIGNAL COVERAGE SCENARIOS
Coverage Strong | Average | Low
De-correlation distance [meter] 75 50 20
Shadowing standard deviation (o) 1 3 5
Number of transmitters 500 300 100

A. Execution Speed

In terms of execution speed, we may see in Fig.(5) that
Djikstra is the clear winner over Bellman-Ford as the number
of intersections increases, with Bellman-Ford taking an order
of magnitude longer for very large numbers of intersections.
In addition, while Acyclic outperforms Djikstra and Bellman-
Ford in terms of speed, it produces less optimal solutions.
Acyclic does give some consideration to weights, but first
minimizes the number of nodes traversed by a route, and then
minimizes the weights to the extent possible without increas-
ing the number of nodes. Consequently, it will rarely match the
performance of Djikstra and Bellman-Ford in routing based on
weighted values. These results mirror the earlier information
presented from the literature and confirm the suitability of
Djikstra as a speedy, highly optimal algorithm [8]. We include
Acyclic throughout our results as a useful comparison to the
identical solutions produced by Bellman-Ford and Djikstra.

B. Partial Knowledge Effects

We explore how the algorithms perform with partial data
availability. Fig.(6) presents algorithms’ performance for
strong signal coverage.

1) Dijkstra and Bellman-Ford Performance: As shown
in Fig.(6) demonstrates demonstrates that for Djikstra and
Bellman-Ford there are rapid gains initially with increasing
signal knowledge followed by a plateau at a partial signal
knowledge size of 10 percent. A curve such as this is typical
and expected in applications such as these where increased
data tends to offer diminishing returns. This data confirms our
expectations that routing autonomous vehicles based on factors
of which there is only partial knowledge may be highly effec-
tive. Further research would be useful to confirm this trend for
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Fig. 5. Routing algorithm execution speeds

other routing data, such as the expected fuel consumption on
routes with varying elevation and speed limit data. The ability
to use only partially known factors offers great promise in
reducing the amount of data transmission and storage required
to implement effective autonomous vehicle routing systems.
The utility of partially known factors is particularly exiting
for vehicle to vehicle communications in which each vehicle
only has limited information for a small surrounding area. The
utility of partial factors also offers the possibility of reducing
load on vehicle to infrastructure communications networks as
routing may be 95 percent effective with only a tenth of the
data required for 100 percent optimal routing.

2) Acyclic Performance: One exception to our results is
the performance of Acyclic where we notice a flat response to
increased signal knowledge, as shown in Fig.(6). The reason
for the flat response lies in how Acyclic considers signal
data. Acyclic first finds the route with the smallest number
of nodes. Only then does it optimize for our weights that
combine signal strength and distance. What this process means
is that Acyclic will only alter its path based off signal strength
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if there are multiple paths with the least possible number of
nodes. Consequently, as signal strength is always a secondary
consideration for Acyclic, we would expect it to vary its path
recommendations relatively little in response to increased sig-
nal data compared to Djikstra and Bellman-Ford which fully
consider signal weights. The data confirms these expectations.
We plainly see little response by Acyclic to increased signal
data. Thus, what appears a potential contradiction to our results
is merely a confirmation of our expectations for algorithm
performance.

3) Signal Coverage Effects: Fig.(7) - (9) demonstrate the
performance per each routing algorithms for various cov-
erage scenarios. As shown, routing algorithms are slightly
affected by the signal coverage when performing with partial
knowledge. The best performance is noticed for strong signal
coverage.
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Fig. 9. Acyclic routing algorithm performance with partial signal knowl-
edge

V. CONCLUSION

Autonomous vehicles routing based on signal strength en-
hances safety and reliability. As we have seen, partial knowl-
edge of signal strength can offer substantial improvements
to autonomous vehicle performance in the form of improved
routing. Successful autonomous routing with partial signal
strength knowledge overcomes the challenges associated with
data transfer between the vehicle and infrastructure, and also
reduces the data that needs to be collected. We have exam-
ined previously developed routing algorithms with multifactor
routing. We have found that with 30 percent of signal strength
knowledge the autonomous vehicle will follow a route that is
5 percent close to the optimal one.
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